p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊2D8, C24.79D4, C4⋊C4⋊4D4, (C2×C8)⋊5D4, (C2×D4)⋊5D4, (C22×D8)⋊1C2, C4.60C22≀C2, C22.80(C2×D8), C4.26(C4⋊1D4), C4.13(C4⋊D4), C2.12(C8⋊7D4), C2.12(C8⋊2D4), (C22×C4).137D4, C23.896(C2×D4), C2.27(D4⋊D4), C2.18(C22⋊D8), C22.4Q16⋊36C2, C2.4(C23⋊2D4), C22.192C22≀C2, C22.100(C4○D8), (C22×C8).105C22, (C23×C4).267C22, (C22×D4).56C22, C22.217(C4⋊D4), C22.127(C8⋊C22), (C22×C4).1430C23, (C2×C4⋊D4)⋊1C2, (C2×C22⋊C8)⋊18C2, (C2×D4⋊C4)⋊10C2, (C2×C4).1020(C2×D4), (C2×C4).613(C4○D4), (C2×C4⋊C4).101C22, SmallGroup(128,731)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊2D8
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, eae=ab=ba, ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 656 in 248 conjugacy classes, 56 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C22⋊C8, D4⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C22×C8, C2×D8, C23×C4, C22×D4, C22×D4, C22.4Q16, C2×C22⋊C8, C2×D4⋊C4, C2×C4⋊D4, C22×D8, C23⋊2D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C22≀C2, C4⋊D4, C4⋊1D4, C2×D8, C4○D8, C8⋊C22, C23⋊2D4, C22⋊D8, D4⋊D4, C8⋊7D4, C8⋊2D4, C23⋊2D8
(1 49)(2 15)(3 51)(4 9)(5 53)(6 11)(7 55)(8 13)(10 37)(12 39)(14 33)(16 35)(17 46)(18 28)(19 48)(20 30)(21 42)(22 32)(23 44)(24 26)(25 64)(27 58)(29 60)(31 62)(34 50)(36 52)(38 54)(40 56)(41 61)(43 63)(45 57)(47 59)
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(17 34)(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 33)(41 53)(42 54)(43 55)(44 56)(45 49)(46 50)(47 51)(48 52)
(1 24)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(25 56)(26 49)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)(33 57)(34 58)(35 59)(36 60)(37 61)(38 62)(39 63)(40 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 8)(2 7)(3 6)(4 5)(9 41)(10 48)(11 47)(12 46)(13 45)(14 44)(15 43)(16 42)(17 22)(18 21)(19 20)(23 24)(25 49)(26 56)(27 55)(28 54)(29 53)(30 52)(31 51)(32 50)(33 40)(34 39)(35 38)(36 37)(57 64)(58 63)(59 62)(60 61)
G:=sub<Sym(64)| (1,49)(2,15)(3,51)(4,9)(5,53)(6,11)(7,55)(8,13)(10,37)(12,39)(14,33)(16,35)(17,46)(18,28)(19,48)(20,30)(21,42)(22,32)(23,44)(24,26)(25,64)(27,58)(29,60)(31,62)(34,50)(36,52)(38,54)(40,56)(41,61)(43,63)(45,57)(47,59), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,33)(41,53)(42,54)(43,55)(44,56)(45,49)(46,50)(47,51)(48,52), (1,24)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,41)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,22)(18,21)(19,20)(23,24)(25,49)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,40)(34,39)(35,38)(36,37)(57,64)(58,63)(59,62)(60,61)>;
G:=Group( (1,49)(2,15)(3,51)(4,9)(5,53)(6,11)(7,55)(8,13)(10,37)(12,39)(14,33)(16,35)(17,46)(18,28)(19,48)(20,30)(21,42)(22,32)(23,44)(24,26)(25,64)(27,58)(29,60)(31,62)(34,50)(36,52)(38,54)(40,56)(41,61)(43,63)(45,57)(47,59), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,33)(41,53)(42,54)(43,55)(44,56)(45,49)(46,50)(47,51)(48,52), (1,24)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,41)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,22)(18,21)(19,20)(23,24)(25,49)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,40)(34,39)(35,38)(36,37)(57,64)(58,63)(59,62)(60,61) );
G=PermutationGroup([[(1,49),(2,15),(3,51),(4,9),(5,53),(6,11),(7,55),(8,13),(10,37),(12,39),(14,33),(16,35),(17,46),(18,28),(19,48),(20,30),(21,42),(22,32),(23,44),(24,26),(25,64),(27,58),(29,60),(31,62),(34,50),(36,52),(38,54),(40,56),(41,61),(43,63),(45,57),(47,59)], [(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(17,34),(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,33),(41,53),(42,54),(43,55),(44,56),(45,49),(46,50),(47,51),(48,52)], [(1,24),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(25,56),(26,49),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55),(33,57),(34,58),(35,59),(36,60),(37,61),(38,62),(39,63),(40,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,8),(2,7),(3,6),(4,5),(9,41),(10,48),(11,47),(12,46),(13,45),(14,44),(15,43),(16,42),(17,22),(18,21),(19,20),(23,24),(25,49),(26,56),(27,55),(28,54),(29,53),(30,52),(31,51),(32,50),(33,40),(34,39),(35,38),(36,37),(57,64),(58,63),(59,62),(60,61)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | C4○D4 | D8 | C4○D8 | C8⋊C22 |
kernel | C23⋊2D8 | C22.4Q16 | C2×C22⋊C8 | C2×D4⋊C4 | C2×C4⋊D4 | C22×D8 | C4⋊C4 | C2×C8 | C22×C4 | C2×D4 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 2 | 1 | 4 | 1 | 2 | 4 | 4 | 2 |
Matrix representation of C23⋊2D8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
14 | 3 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
14 | 3 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[14,3,0,0,0,0,3,3,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,16,0] >;
C23⋊2D8 in GAP, Magma, Sage, TeX
C_2^3\rtimes_2D_8
% in TeX
G:=Group("C2^3:2D8");
// GroupNames label
G:=SmallGroup(128,731);
// by ID
G=gap.SmallGroup(128,731);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,2019,1018,248]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,e*a*e=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations